Synthetic studies towards bioactive frondosins: rapid framework access and diversity creation

Goverdhan Mehta*, Nachiket S. Likhite
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, India

A R T I C L E I N F O

Article history:

Received 31 May 2009
Revised 23 June 2009
Accepted 3 July 2009
Available online 9 July 2009

Abstract

A very concise and diversity-oriented approach to rapidly access frondosin-related frameworks from commercially available building blocks is outlined.

© 2009 Elsevier Ltd. All rights reserved.

Freyer and co-workers reported the isolation and structure determination of five novel meroterpenoids from the marine sponge Dysidea frondosa collected from the Pacific island, Pohnpei in the Federated States of Micronesia. ${ }^{1}$ A bioassay-guided effort yielded frondosins A-E 1-5, possessing novel carbon skeleta that emanated through a mixed biosynthetic pathway. The structures of $\mathbf{1 - 5}$ were derived through extensive two-dimensional NMR studies. ${ }^{1}$ Besides their unusual molecular architecture, frondosins 1-5 exhibited promising bioactivity profiles. In particular, frondosins inhibited binding of interleukin-8 (IL-8) to its receptor and also protein kinase C in low micromolar range. Among the frondosins, the simplest member frondosin 1 was found to be the most active with IC_{50} values against $\mathrm{IL}-8 \mathrm{R} \alpha$ and $\mathrm{IL}-8 \mathrm{R} \beta$ of 3.4 and

1: Frondosin A

3: Frondosin C

2: Frondosin B

4: Frondosin $D(R=H)$

[^0]$3.2 \mu \mathrm{M}$, respectively. ${ }^{1}$ The IC_{50} value of $\mathbf{1}$ against PKC- α was even more promising at $1.8 \mu \mathrm{M}$. Subsequently, researchers at the National Cancer Institute (NCI) reported the isolation of antipodal frondosins A and D from another sponge, Euryspongia sp., ${ }^{2}$ and observed that these natural products exhibited HIV-inhibitory activity in anti-HIV assays. ${ }^{2}$

Since IL-8, a chemoattractant peptide for neutrophils, is implicated in acute and chronic inflammatory disorders, tumour progression and metastasis, ${ }^{3}$ the promising bioactivity of frondosins 1-5 against this target has stimulated a great deal of interest and activity towards their synthesis.

Several research groups have developed and successfully implemented impressive synthetic strategies towards bioactive frondosins. ${ }^{4-9}$ We have also accomplished the total synthesis of frondosins A and B. ${ }^{10}$ However, recognizing the importance and promise of frondosins in general, and of frondosin A in particular, we decided to embark on a second-generation approach for the rapid acquisition of the oxyarylated bicyclo[5.4.0]undecane-based AB -ring core. The mandate of the present study was to enable creation of diversity around the frondosin scaffold, particularly with regard to the arene and the seven-membered B-ring, rather than achieve a particular target. In this Letter, we disclose a very concise and practical synthesis of the frondosin core that enables ready access to interesting functional variants and diversified structures.

Claisen-Schmidt condensation between cyclohexanone and the dimethyl ether of gentisic aldehyde $\mathbf{6 a}$ led to the arylidene $7 \mathbf{7 a}$ and further exhaustive methylation furnished the gem-dimethylated product $\mathbf{8 a},{ }^{10}$ Scheme 1. Hosomi-Sakurai addition of allyltrimethylsilane to $8 \mathbf{a}$ in the presence of TiCl_{4} was stereoselective to furnish $\mathbf{9 a}$ as a single $10 S^{*}, 11 R^{*}$-diastereomer (frondosin numbering). ${ }^{11}$ The origin of stereoselectivity in this addition could possibly be attributed to the intermediacy of a tight arene π-stabilized titanium enolate (see Scheme 1), which facilitates protonation from the more open arene-bearing face. In a similar fashion, aldehydes $\mathbf{6 b}, \mathbf{c}$ furnished $\mathbf{7 b}, \mathbf{c}$ and were further gem-dimethylated to $\mathbf{8 b}, \mathbf{c}$, respectively. Hosomi-Sakurai allylation of $\mathbf{8 b}, \mathbf{c}$ led to $\mathbf{9 b}, \mathbf{c}$ with

Scheme 1. Reagents and conditions: (a) 1.0 M aq $\mathrm{NaOH}, 12 \mathrm{~h}, 70 \%$ ($\mathbf{7 a}, \mathbf{7 c}$), 80% (7b); (b) ${ }^{t} \mathrm{BuOK}, \mathrm{MeI}$, toluene, $0^{\circ} \mathrm{C}$ to rt, $3-4 \mathrm{~h}, 85 \%$ ($\mathbf{8 a}$), 80% ($\mathbf{8 b}$), 50% ($\mathbf{8 c}$); (c) (i) $\mathrm{TiCl}_{4},-78{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \mathrm{~min}$, (ii) allyltrimethylsilane, $-30^{\circ} \mathrm{C}, 3-4 \mathrm{~h}, 98 \%(\mathbf{9 a}, 9 b)$, 65% (9c).
excellent diastereocontrol, Scheme 1. The involvement of an elec-tron-rich arene-stabilized titanium enolate species in the diastereoselection was further supported by the fact that when the Hosomi-Sakurai reaction was performed in the presence of iodine instead of TiCl_{4}, according to a recently reported protocol, ${ }^{12}$ a $1: 1$ diastereomeric mixture of $10 S^{*}, 11 R^{*}-\mathbf{9 a}$ and $10 S^{*}, 11 S^{*}-\mathbf{1 0}^{11}$ was obtained, Scheme 2. Thus, the observed diastereoselection leading to $\mathbf{9 a - c}$ appears to be a consequence of a subtle, but interesting long-range interaction between the electron-rich arene ring and the Ti-enolate.

Barbier-type addition of allyl bromide to $\mathbf{9 a}$ in the presence of zinc led to a readily separable diastereomeric mixture (1:1) of $\mathbf{1 1}$ and $\mathbf{1 2}$ to set-up the contemplated RCM protocol. Indeed, exposure of tertiary alcohols $\mathbf{1 1}$ and $\mathbf{1 2}$ to Grubbs' I catalyst smoothly led to oxyarylated bicyclo[5.4.0]undecanes 13 and 14, respectively. ${ }^{11}$ OsO_{4}-Mediated dihydroxylation of $\mathbf{1 3}$ led to a crystalline triol 15 whose X-ray crystal structure secured the stereochemical assignment of its precursors 13, 11 and 9 a and by extrapolation of $\mathbf{1 2}$ and $\mathbf{1 4}$, Scheme $3 .{ }^{13}$ Access to the frondosin core could also be achieved from the $10 S^{*}, 11 S^{*}$-isomer 10 through Barbier addition to give diastereomeric tertiary alcohols 16 and 17 and RCM mediated by Grubbs' I catalyst furnished bicyclic compounds 18 and 19, respectively, Scheme $4 .{ }^{11}$ The stereostructures of these were secured through single crystal X-ray structure determination of $\mathbf{1 8}$. ${ }^{13}$

In a similar manner, $\mathbf{9 b}$ and $\mathbf{9 c}$ were subjected to Barbier reaction with allyl bromide in the presence of zinc; quite unexpectedly, the additions were stereoselective furnishing 20 and 21, respectively, Scheme 5. A single crystal X-ray structure determination ${ }^{13}$ of 21 settled the stereochemical issues. Both dienes 20 and 21

Scheme 2. Reagents and conditions: (a) allyltrimethylsilane, cat. $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, 5 h, 88\%.

Scheme 3. Reagents and conditions: (a) zinc dust, allyl bromide, THF, sonication, $10-15{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}, 96 \%$; (b) Grubbs' 1 st generation catalyst, $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{rt}, 8 \mathrm{~h}, 98 \%$; (c) Grubbs' 1 st generation catalyst, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $2 \mathrm{~h}, 85 \%$; (d) $\mathrm{OsO}_{4}, 50 \%$ aq 4 methylmorpholine N -oxide, acetone-water (4:1), rt, $12 \mathrm{~h}, 95 \%$.

Scheme 4. Reagents and conditions: (a) zinc dust, allyl bromide, THF, sonication, $10-15^{\circ} \mathrm{C}, 15 \mathrm{~min}, 86 \%$; (b) Grubbs' 1 st generation catalyst, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $2 \mathrm{~h}, 65 \%$; (c) Grubbs' 1st generation catalyst, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, $1 \mathrm{~h}, 88 \%$.

Scheme 5. Reagents and conditions: (a) zinc dust, allyl bromide, THF, sonication, $10-15^{\circ} \mathrm{C}, 15 \mathrm{~min}, 74 \%$ based on recovered starting material (20), 64% based on recovered starting material (21); (b) Grubbs' 1 st generation catalyst, $\mathrm{C}_{6} \mathrm{H}_{6}$, reflux, 2$4 \mathrm{~h}, 99 \%$ (22), 65\% (23).
underwent smooth and efficient RCM reaction on exposure to Grubbs' I catalyst to furnish bicyclic compounds 22 and 23, respectively, Scheme $5 .{ }^{11}$ This sequence enabled a rapid five-step access to the basic bicyclic core of frondosins with functional variation

ORTEP of 26

27

26

Scheme 6. Reagents and conditions: (a) SOCl_{2}, pyridine, $-40^{\circ} \mathrm{C}, 15 \mathrm{~min}, 72-75 \%$; (b) ${ }^{1} \mathrm{O}_{2}$, TPP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 8 h , quant.; (c) (i) zinc dust, $\mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 24 \mathrm{~h}, 92 \%$; (ii) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt, 5 h , quant.; (d) PDC, ${ }^{\mathrm{t}} \mathrm{BuOOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $2 \mathrm{~h}, 20 \%$ or $\mathrm{Cr}(\mathrm{CO})_{6}$, ${ }^{t} \mathrm{BuOOH}, \mathrm{MeCN}$, reflux, $2 \mathrm{~h}, 30 \%$.
at the arene moiety from commercial starting materials and set the stage to explore further creation of diversity on the seven-membered ring of the bicyclic framework.

Towards this end, bicyclic tertiary alcohols 13 and 14, on exposure to classical dehydration conditions, furnished smoothly cycloheptadiene derivative $\mathbf{2 4}$, Scheme 6 .

Oxyfunctionalization of $\mathbf{2 4}$ was achieved through singlet oxy-gen-mediated photooxygenation to furnish stereoselectively endoperoxide 25 through addition from the upper face, Scheme 6. Reductive peroxide cleavage of $\mathbf{2 5}$ to the 1,4 -enediol and MnO_{2} oxidation furnished a crystalline hemiketal $\mathbf{2 6}$, the stereostructure of which was elucidated through single crystal X-ray structure determination. In an alternate oxyfunctionalization approach, diene 24 was subjected to direct allylic oxidation with either $\mathrm{PDC} /{ }^{t} \mathrm{BuOOH}$ or $\mathrm{Cr}(\mathrm{CO})_{6} /{ }^{t} \mathrm{BuOOH},{ }^{14}$ which interestingly led to the transposed cycloheptadienone 27, Scheme $6 .{ }^{11}$

It is interesting to note that the dehydration of bicyclic tertiary alcohols in Lewis acid medium takes a somewhat different course. For example, compound 14 on exposure to BF_{3}-etherate led to the cyclopropane-bearing tricycle 28 (stereostructure established through 2D NMR studies $)^{11}$ via the possible intermediacy of cyclopropylcarbinyl cation 29 and a 1,3-cyclopropane shift involving a

Scheme 7. Reagents and conditions: (a) cat. $\mathrm{BF}_{3} . \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 58 \%$; (b) cat. $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 15 \mathrm{~min}, 82 \%$; (c) $10 \% \mathrm{Pd}-\mathrm{C}, \mathrm{H}_{2}, \mathrm{EtOAc}, \mathrm{rt}, 5 \mathrm{~min}$, quant.

Scheme 8. Reagents and conditions: (a) ${ }^{t} \mathrm{BuOK}, \mathrm{DMSO}, \mathrm{rt}, 12 \mathrm{~h}, 60 \%$ based on recovered starting material; (b) SOCl_{2}, pyridine, $-40^{\circ} \mathrm{C}, 15 \mathrm{~min}, 80 \%$; (c) $\mathrm{OsO}_{4}, 50 \%$ aq 4 -methylmorpholine N -oxide, acetone-water (4:1), rt, $12 \mathrm{~h}, 60 \%$; (d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}$ to rt, $5 \mathrm{~h}, 78 \%$; (e) $\mathrm{CF}_{3} \mathrm{COOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 53 \%$.
cascade of cyclopropylcarbinyl-cyclobutyl cation rearrangements, Scheme 7. On the other hand, tertiary alcohol $\mathbf{1 8}$ on exposure to $\mathrm{BF}_{3} . \mathrm{OEt}_{2}$ furnished the homoconjugated diene $\mathbf{3 0}$, which could be partially reduced to furnish the frondosin prototype structure 31, Scheme 7.

In the context of further amplifying the substitution on the se-ven-membered ring, it was observed that the double bond in $\mathbf{1 4}$ could be relocated to give $\mathbf{3 2}^{11}$ through exposure to a base, Scheme 8. Further, controlled dehydration in $\mathbf{3 2}$ furnished the cycloheptadiene 33. Regioselective OsO_{4}-mediated dihydroxylation of 33 led to 34 , which could be oxidized to the α-hydroxyketone $35 .{ }^{11}$ Exposure of $\mathbf{3 4}$ to acid led to the tricyclic dihydrofuran derivative $\mathbf{3 6}$, Scheme $8 .{ }^{11}$

In summary, we have delineated a concise route to the core structure of bioactive frondosins that is amenable to ready diversification of the arene moiety and enables functionalization of all the positions on the seven-membered ring.

Acknowledgements

NSL thanks CSIR for the award of a research fellowship. X-ray data were collected at the CCD facility at IISc. We thank Mr. Saikat Sen for crystal structure determination and Dr. C. S. Ananda Kumar for help with some experiments. GM is thankful to CSIR for the award of a Bhatnagar Fellowship and to CBU of JNCASR, Bangalore, for supporting this research.

References and notes

1. Patil, A. D.; Freyer, A. J.; Killmer, L.; Offen, P.; Carte, B.; Jurewicz, A. J.; Johnson, R. K. Tetrahedron 1997, 53, 5047-5060.
2. Hallock, Y. F.; Cardellina, J. H., II; Boyd, M. R. Nat. Prod. Lett. 1998, 11, 153-160.
3. (a) Seitz, M.; Dewald, B.; Gerber, N.; Baggiolini, M. J. Clin. Invest. 1991, 87, 463469; (b) Miller, E. J.; Cohen, A. B.; Nagao, D.; Griffith, R. J.; Maunder, R. J.; Martin, T. R.; Weiner-Kronish, J. P.; Sticherling, M.; Christophers, E.; Matthay, M. A. Am. Rev. Respir. Dis. 1992, 146, 427-432; (c) Brat, D. J.; Bellail, A. C.; Van Meir, E. G. Neurooncology 2005, 7, 122-133; (d) Zhu, Y. M.; Webster, S. J.; Flower, D.; Woll, P. J. Br. J. Cancer 2004, 91, 1970-1976.
4. (a) Inoue, M.; Frontier, A. J.; Danishefsky, S. J. Angew. Chem., Int. Ed. 2000, 39, 761-764; (b) Inoue, M.; Carson, M. W.; Frontier, A. J.; Danishefsky, S. J. J. Am. Chem. Soc. 2001, 123, 1878-1889.
5. (a) Hughes, C. C.; Trauner, D. Angew. Chem., Int. Ed. 2002, 41, 1569-1572; (b) Hughes, C. C.; Trauner, D. Tetrahedron 2004, 60, 9675-9686.
6. (a) Kerr, D. J.; Willis, A. C.; Flynn, B. L. Org. Lett. 2004, 6, 457-460; (b) Masters, K.-S.; Flynn, B. L. J. Org. Chem. 2008, 73, 8081-8084.
7. (a) Li, X.; Ovaska, T. V. Org. Lett. 2007, 9, 3837-3840; (b) Li, X.; Kyne, R. E.; Ovaska, T. V. Tetrahedron 2007, 63, 1899-1906; (c) Li, X.; Keon, A. E.; Sullivan, J. A.; Ovaska, T. V. Org. Lett. 2008, 10, 3287-3290.
8. Trost, B. M.; Hu, Y.; Horne, D. B. J. Am. Chem. Soc. 2007, 129, 11781-11790.
9. Oslon, J. P.; Davies, H. M. L. Org. Lett. 2008, 10, 573-576.
10. Mehta, G.; Likhite, N. S. Tetrahedron Lett. 2008, 49, 7113-7116.
11. All new compounds reported here are racemic and characterized on the basis of spectroscopic data (IR, ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and mass). Spectral data of some key compounds follows: 9a IR (neat): $v_{\max }$ 2932, 1705, 1503, $1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.71(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.61(\mathrm{~d}$, $J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.66-5.52(\mathrm{~m}, 1 \mathrm{H}), 4.89-4.77(\mathrm{~m}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H})$, 3.48-3.40 (m, 1H), 3.03-2.94 (m, 1H), 2.47-2.28 (m, 2H), 1.76-1.72 (m, 2H), $1.55-1.49(\mathrm{~m}, 4 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 216.84$, $153.42,152.48,137.32,132.57,116.22,115.15,111.68,110.53,56.09,55.55$, 50.18, 46.20, 42.74, 37.99, 33.81, 25.53, 24.51 [2C], 21.84; HRMS (ES): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 339.1936$, found: 339.1933; 10 IR (neat): $v_{\text {max }} 2934$, 1710, 1642, 1592, $1500,1460 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.77(\mathrm{~d}$, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=8.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.70-5.59$ $(\mathrm{m}, 1 \mathrm{H}), 5.00-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 2.95-2.85(\mathrm{~m}, 1 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 2 \mathrm{H})$, 2.06-1.99 (m, 1H), 1.78-1.36 (m, 6H), $1.15(\mathrm{~s}, 3 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 215.74,153.12,151.59,137.17,133.41,115.61,115.22$, 111.28, 110.02, 55.95, 55.58, 49.31, 45.61, 41.61, 35.38, 33.13, 29.25, 25.67, 25.28, 21.58; HRMS (ES): m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 339.1936$, found: 339.1920; 13 IR (neat): $v_{\text {max }} 3573,2934,1499,1465 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (300 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 6.84(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.93-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.56-5.50(\mathrm{~m}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 3.08-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.75$ (s, 1H), 2.69 (br s, 1 H), 2.47 (dd, $J=17.5,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.12$ (m, 1H), 1.96 (dd, $J=16.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.57-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.37-1.25(\mathrm{~m}, 5 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.95$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.68,150.93,137.67,132.66,126.17$, 114.37, 111.93, 110.68, 78.13, 56.20, 55.62, 47.52, 39.73, 37.68, 34.96, 31.91, 29.99, 25.63, 23.36, 20.99 [2C]; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: 353.2093, found: 353.2088; 14 IR (neat): $v_{\max } 3563,2932,1613,1499$, $1463 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.77(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.73$ (d, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=8.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.11(\mathrm{~m}, 1 \mathrm{H}), 5.76-5.67(\mathrm{~m}$, 1 H), $3.78(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 2.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.62-2.40(\mathrm{~m}, 3 \mathrm{H}), 2.11-2.04(\mathrm{~m}$, 2H), $1.90(\mathrm{~s}, 1 \mathrm{H}), 1.75-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.34-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.05-0.97(\mathrm{~m}, 2 \mathrm{H}), 1.02$ (s, 3H), $0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.72,151.02,137.50,135.17$, $127.91,111.71$ [2C], 109.85, 73.94, 56.18, 55.56, 38.72, 37.27, 35.26, 34.03 [2C], 27.91, 25.27, 22.73, 21.92, [2C]; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: 353.2093, found: 353.2073 ; $18 \mathrm{mp}: 127-128^{\circ} \mathrm{C}$; IR (neat): $v_{\max } 3434,2929$, 1615, 1494, $1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$), 6.67 (dd, $J=8.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.02-5.96(\mathrm{~m}, 1 \mathrm{H}), 5.63-$ $5.57(\mathrm{~m}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.91-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.50(\mathrm{~m}, 2 \mathrm{H})$, $2.40(\mathrm{~s}, 1 \mathrm{H}), 2.35-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.18(\mathrm{dd}, J=17.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 1 \mathrm{H})$, $1.54-1.41(\mathrm{~m}, 2 \mathrm{H}), 1.26-1.16(\mathrm{~m}, 2 \mathrm{H}), 1.08-0.99(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}$, 3H), 0.96-0.94 (m, 1H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.28,150.89,135.81$, $134.10,126.53,115.80,111.12,110.09,77.62,56.13,55.61,42.54,39.51,38.97$, 36.79, $33.56,30.83,25.08,22.69,22.41,22.34$; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 353.2093$, found: $353.2079 ; 19$ IR (neat): $v_{\max } 3558,2934$, 1592, 1493, $1467 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.81-6.67(\mathrm{~m}, 3 \mathrm{H}), 5.92-$ $5.83(\mathrm{~m}, 1 \mathrm{H}), 5.58-5.50(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.67-2.61(\mathrm{~m}, 2 \mathrm{H})$, $2.43(\mathrm{dd}, J=16.8,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 1 \mathrm{H}), 2.17-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.26(\mathrm{~m}, 6 \mathrm{H})$, 0.99 (s, 3H), 0.98 (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.29,150.43,137.14$, 131.15, 126.78, 114.96, 111.04, 109.62, 76.29, 55.94, 55.65, 46.47, 40.13, 38.31, 32.89, 32.01, 27.94, 25.63, 23.27, 21.96, 21.86; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 353.2093$, found: 353.2117 ; 22 IR (neat): $v_{\max } 3564,3416$, 2931, 1508, 1204, $1036 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.65(\mathrm{~s}, 1 \mathrm{H}), 6.49(\mathrm{~s}$, $1 \mathrm{H}), 6.15-6.14(\mathrm{~m}, 1 \mathrm{H}), 5.74-5.67(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H})$, 2.91 (br s, 1H), 2.66 (br s, 1H), $2.58(\mathrm{dd}, J=14.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.48-2.41(\mathrm{~m}, 1 \mathrm{H})$, 2.12-2.04 (m, 2H), 1.74-1.64 (m, 2H), 1.35-1.23 (m, 2H), 1.20-1.05 (m, 1H), $1.02(\mathrm{~s}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H}), 1.02-0.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 150.88$, 147.42, 143.33, 135.27, 127.83, 111.92, 111.87, 98.25, 74.07, 56.88, 56.70, 56.11, 49.07, 38.77, 37.34, 35.46, 34.10, 28.06, 25.28 [2C], 22.81, 21.99; HRMS (ES): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}$: 383.2198 , found: $383.2198 ; 23$ IR (neat): $v_{\max } 3493,2928,1512,1203,1033 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 6.65(\mathrm{~s}$, $1 \mathrm{H}), 6.20-6.13(\mathrm{~m}, 1 \mathrm{H}), 5.79-5.72(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H})$, 2.93 (br s, 1H), 2.64-2.57 (m, 1H), 2.47-2.41(m, 1H), 2.10-2.03(m, 2H), $1.80(\mathrm{~s}$, $1 \mathrm{H}), 1.75-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.23(\mathrm{~m}, 4 \mathrm{H}), 1.13-1.08(\mathrm{~m}, 1 \mathrm{H}), 1.03(\mathrm{~s}, 3 \mathrm{H}), 1.02$ (s, 3H); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 150.40,148.56,145.37,137.29,134.82$, $128.45,113.70,109.88,73.56,61.18,60.58,56.75,49.38,38.90,37.32,36.19$, 34.05, 28.67, 26.94, 25.27, 22.78, 21.91; HRMS (ES): m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{31} \mathrm{BrO}_{4}$ $(\mathrm{M}+\mathrm{Na})^{+}: 461.1303$, found: 461.1313; 27 IR (neat): $v_{\text {max }}$ 2934, 1653, 1612, 1496, $1461 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.82-6.72(\mathrm{~m}, 3 \mathrm{H}), 6.43$ (dd, $J=11.1$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19-6.14(\mathrm{~m}, 2 \mathrm{H}), 4.04(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H})$, 3.16-3.08 (m, 1H), 1.73-1.68 (m, 2H), 1.46-1.36 (m, 2H), 1.27-1.20 (m, 2H), 1.17 (s, 3H), 1.08 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 194.29,168.14,153.47$, $151.08,143.33,133.25,131.38,124.79,115.33,112.01,111.59,55.90,55.61$, 44.14, 43.35, 41.85, 40.01, 34.47, 29.99, 27.39, 21.93; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 349.1780$, found: $349.1797 ; 28$ IR (neat): $v_{\text {max }}$ 2927, 1697, $1506,1489,1455,1219,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.84(\mathrm{~d}$, $J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{dd}, J=9.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H})$, $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.05(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.45(\mathrm{~m}, 7 \mathrm{H}), 1.22(\mathrm{~s}$, $3 \mathrm{H}), 1.16(\mathrm{~s}, 3 \mathrm{H}), 0.93-0.84(\mathrm{~m}, 3 \mathrm{H}), 0.17(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (75 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 153.36,151.76,139.09,134.22,129.70,114.60,111.23,110.89,56.06$, $55.47,39.77,37.42,34.76,31.59,30.18,28.96,28.70,19.74,18.28,10.65,7.83$; MS (ES): $m / z 335(\mathrm{M}+\mathrm{Na})^{+}$; 32 IR (neat): $v_{\text {max }}$ 3488, 2933, 1496, 1461, 1214, $1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.81-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~d}, J=2.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.57-5.55(\mathrm{~m}, 1 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-$ $2.22(\mathrm{~m}, 3 \mathrm{H}), 1.79-1.57(\mathrm{~m}, 5 \mathrm{H}), 1.44-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.17-1.11(\mathrm{~m}, 1 \mathrm{H}), 1.08-$
$0.98(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($75 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 153.39$, 150.10, 138.82, 134.87, 131.40, 117.88, 111.89, 111.74, 56.59, 55.58, 41.01, 39.05, $37.14,37.03,30.53,27.27,25.41,24.18,21.99,21.94$ [2C]; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}$: 353.2093 , found: 353.2086; 35 IR (neat): $v_{\text {max }}$ 3433, 2929, 2861, 1698, 1492, 1464, $1224 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta$ $6.96(\mathrm{~s}, 1 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 2.70-2.65(\mathrm{~m}, 2 \mathrm{H})$, 2.32-1.98 (m, 4H), 1.81-1.46 (m, 6H), $1.09(\mathrm{~s}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 209.01,153.80,151.40,144.16,132.04,130.79,114.42$, 114.31, 113.35, 83.43, 56.17, 55.58, 53.41, 41.19, 39.31, 36.76, 28.06 [2C], 27.70, 26.98, 19.67; HRMS (ES): m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}(\mathrm{M}+\mathrm{Na})^{+}: 367.1885$, found: 367.1874; 36 IR (neat): $v_{\max } 2926,1582,1495,1462,1219,1048 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.85-6.76(\mathrm{~m}, 3 \mathrm{H}), 5.05(\mathrm{~s}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H})$, 2.58-2.52 (m, 1H), 2.08-1.96 (m, 2H), 1.69-1.39 (m, 6H), 1.35-1.20 (m, 2H), 1.17-1.11 (m, 1H), $0.98(\mathrm{~s}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 153.20$ [2C], 137.96, 130.17, 124.31, 116.69, 112.52, 112.48, 89.83, 81.75, 56.19, 55.66, 37.13, 36.16, 25.05, 24.53, 24.25 [2C], 23.09, 20.31, 17.75; HRMS (ES): m/z calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{3}(\mathrm{M}+\mathrm{Na})^{+}: 351.1936$, found: 351.1948 .
12. Yadav, J. S.; Reddy, B. V. S.; Sadasiv, K.; Satheesh, G. Tetrahedron Lett. 2002, 43, 9695-9697.
13. X-ray data were collected at 293 K on a SMART CCD-BRUKER diffractometer with graphite monochromated $\mathrm{MoK} \alpha$ radiation ($\lambda=0.71073 \AA$ Å). Structures were solved by direct methods (SIR92). Refinement was by full-matrix leastsquares procedures on F^{2} using shelxl-97. Crystallographic data have been deposited with the Cambridge Crystallographic Data Centre. Compound 15: CCDC 697875, $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{5}$, $\mathrm{MW}=364.47$, crystal system: triclinic, space group: $P 1$, cell parameters: $a=8.0132$ (55) $\AA, b=11.3339$ (78) \AA, $c=12.1107$ (83) \AA, $\alpha=66.434(10)^{\circ}, \beta=83.514(11)^{\circ}, \gamma=88.146(11)^{\circ}, V=1001.62(51) \AA^{3}, Z=2$, $\rho_{\text {calcd }}=1.21 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=396.0, \quad \mu=0.085 \mathrm{~mm}^{-1}, \quad$ number of l.s. parameters $=251, R 1=0.061$ for 2474 reflections with $I>2 \sigma(I)$ and 0.090 for all 3402 data, $w R 2=0.116, G O F=1.135$ for all data. An ORTEP diagram of 15, drawn at 30% ellipsoid probability, is shown below.

ORTEP diagram of $\mathbf{1 5}$

Compound 18: $\mathrm{CCDC} 697874, \mathrm{C}_{21} \mathrm{H}_{30} \mathrm{O}_{3}, \mathrm{MW}=330.45$, crystal system: triclinic, space group: $P \overline{1}$, cell parameters: $a=7.3108$ (70) \AA, $b=9.3827$ (88) \AA, $c=13.6878(13) \AA, \alpha=89.473(16)^{\circ}, \beta=81.928(15)^{\circ}, \gamma=75.333(15)^{\circ}$, $V=898.98 \quad(45) \quad \AA^{3}, \quad Z=2, \quad \rho_{\text {calcd }}=1.22 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=360.0$, $\mu=0.080 \mathrm{~mm}^{-1}$, number of 1.s. parameters $=222, R 1=0.041$ for 2806 reflections with $I>2 \sigma(I)$ and 0.047 for all 3255 data, $w R 2=0.107$, GOF $=1.037$ for all data; Compound 21: CCDC 733793; $\mathrm{C}_{24} \mathrm{H}_{35} \mathrm{BrO}_{4}$, MW $=467.4$, crystal system: monoclinic, space group: $P 21 / n$, cell parameters: $a=17.0258$ (49) $\AA, b=7.4381$ (20) $\AA, c=19.0945(56) \AA, \beta=104.623(6)^{\circ}$, $V=2339.79 \quad(40) \quad \AA^{3}, \quad Z=4, \quad \rho_{\text {calcd }}=1.33 \mathrm{~g} \mathrm{~cm}^{-3}, \quad F(000)=983.9$, $\mu=1.783 \mathrm{~mm}^{-1}$, number of 1.s. parameters $=268, R 1=0.061$ for 1949 reflections with $I>2 \sigma(I)$ and 0.176 for all 4321 data, $w R 2=0.076$, GOF $=0.891$ for all data. An ORTEP diagram of 21, drawn at 30% ellipsoid probability, is shown below.

Compound 26: $\mathrm{CCDC} 733792 ; \mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{4}, \mathrm{MW}=360.5$, crystal system: triclinic, space group: $P \overline{1}$, cell parameters: $a=10.4326$ (43) \AA, $b=12.4180$ (50) \AA, $c=16.2569(66) \AA, \alpha=91.438(8)^{\circ}, \beta=101.948(8)^{\circ}, \gamma=93.388(7)^{\circ}, V=2055.38$ (14) $\AA^{3}, Z=4, \rho_{\text {calcd }}=1.16 \mathrm{~g} \mathrm{~cm}^{-3}, F(000)=775.9, \mu=0.082 \mathrm{~mm}^{-1}$, number of l.s. parameters $=479, R 1=0.129$ for 4799 reflections with $I>2 \sigma(I)$ and 0.167 for all 7181 data, $w R 2=0.374, G O F=1.432$ for all data.
14. (a) Schultz, A. G.; Taveras, A. G.; Harrington, R. E. Tetrahedron Lett. 1988, 29, 3907-3910; (b) Pearson, A. J.; Chen, Y.-S.; Hsu, S.-Y.; Ray, T. Tetrahedron Lett. 1984, 25, 1235-1238.

[^0]: * Corresponding author. Tel.: +91 8023600367; fax: +91 8023600283.

 E-mail address: gm@orgchem.iisc.ernet.in (G. Mehta).

